2023(e)ko otsailaren 8(a), asteazkena

Errusiar Biderketaren Metodoa


















Mundu guztiak ez du biderkatzen guk hemen egiten dugun bezala. Bi zenbakiren biderkadura lortzeko darabilgun metodoan hamar zifren (0tik 9ra) biderkatzeko taulak ezagutu behar ditugu, txiki txikitatik ikasi genituen hamar taula horiek; adibidez, hauxe da 7ren biderkatzeko taula:
                        7 x 0 =  0
7 x 1 = 7
7 x 2 = 14
7 x 3 = 21
7 x 4 = 28
7 x 5 = 25
7 x 6 = 42
7 x 7 = 49
7 x 8 = 56
7 x 9 = 63


Baina, errusiar biderketa bezala ezagutzen den metodoan ez da biderkatzeko taularik ezagutu behar; zenbaki baten doblea eta erdia lortzeko gai izan behar gara, eta ondoren batuketa bat burutu behar da hasierako bi zenbakiren arteko biderkadura kalkulatzeko. Bideo honek metodoa bera ederki azaltzen du eta metodoak barneratzen duen printzipio matematikoa ere: 






Jatorrizko bideoa ingelesez ekoizturik dago eta hemen ikus dezakezu










ADIBIDEAK


Demagun lau biderketa hauek egin nahi ditugula errusiar biderketaren metodoa aplikatuz:


    33 x 7 =          34 x 7 =          35 x 7 =          36 x 7 =   




33 x 7


Lehenengo biderkagaiaren erdiak eta bigarren biderkagaiaren dobleak kalkulatuz ondoko taula osatu. Zenbaki baten erdia eskuratzean dezimalak ez dira kontutan hartuko; esate baterako 33ren erdia 16,5 da baina taulan 16 idatziko da: 































33 7
   16       14   
    8       28   
    4       56   
    2      112   
1 224

?




Ezkerreko zutabeko bikoitiak diren errenkada osoak ezabatu:






























33 7
   16       14   
    8       28   
    4       56   
    2      112   
1 224

231




Eskumako zutabean geratu diren zenbakien batuketa eginez, lortu den 7+224=231 batura hori bilatzen dugun emaitza da, hots, lortutako batura helburuko 33x7=231 biderkadura bezalakoa da.



34 x 7


Lehenengo biderkagaiaren erdiak eta bigarren biderkagaiaren dobleak kalkulatuz, eta ezkerreko zutabetik abiatuta bikoitiak diren errenkadak ezabatuz ondoko taula osatzen da, non lehenago esan den bezala 17ren erdia 8,5 izan arren taulan 8 idatziko dugun:






























    34        7   
   17  
   14   
    8       28   
    4       56   
    2      112   
1 224

238


Eskumako zutabean geratu diren zenbakien batuketa eginez, lortu den 14+224=238 batura bilatzen dugun emaitza da, hots, lortutako batura helburuko 34x7=238 biderkadura bezalakoa da.



35 x 7


Lehenengo biderkagaiaren erdiak eta bigarren biderkagaiaren dobleak kalkulatuz, eta ezkerreko zutabetik abiatuta bikoitiak diren errenkadak ezabatuz ondoko taula osatzen da, non lehenago esan den bezala 17ren erdia 8,5 izan arren taulan 8 idatziko dugun:






























    35  
    7   
   17  
   14   
    8       28   
    4       56   
    2      112   
1 224

238


Eskumako zutabean geratu diren zenbakien batuketa eginez, lortu den 7+14+224=245 batura bilatzen dugun emaitza da, hots, lortutako batura helburuko 35x7=245 biderkadura bezalakoa da.



36 x 7


Lehenengo biderkagaiaren erdiak eta bigarren biderkagaiaren dobleak kalkulatuz, eta ezkerreko zutabetik abiatuta bikoitiak diren errenkadak ezabatuz ondoko taula osatzen da, non lehenago esan den bezala 9ren erdia 4,5 izan arren taulan 4 idatziko dugun:































    36  
    7   
    18       14  
   9  
   28  
    4       56   
    2      112   
1 224

252



Eskumako zutabean geratu diren zenbakien batuketa eginez, lortu den 28+224=252 batura bilatzen dugun emaitza da, hots, lortutako batura helburuko 36x7=252 biderkadura bezalakoa da.










PROGRAMA

Errusiar Biderketaren Metodoa aplikatzen duen programa baten irteera bat hemen erakusten da:







Jarraian, bi artikulu hauek jorratuko ditugu:




 



iruzkinik ez:

Argitaratu iruzkina