2023(e)ko otsailaren 17(a), ostirala

5. astea | Newton-en metodoa funtzio trigonometrikoekin

Newton-Raphson hurbilketa-metodoa cos(x)-0.5x-2=0 ekuazioaren erro bat kalkulatzeko




Newton–Raphson metodoa (Newton-en metodo gisa ere ezagutzen dena) zenbakizko analisi-metodo bat da. Metodo honek funtzioen erro gero eta hobeak lortzen ditu, hau da, funtzioa zero egiten duen x balioa bilatzen du. Beste modu batez esanik, funtzioak OX ardatza mozten duen balioa (funtzioaren erroa) ematen du Newton–Raphson metodoak. Algoritmoa erroaren hurbilketa batekin hasten da eta urrats bakoitzean erroaren hurbilketa hobea lortzen du.




Aldagai bakarreko funtzio errealen kasuan honakoa da metodoa:


Izan bedi ƒ funtzioa x errealentzat definitua, eta izan bedi ƒ' bere deribatua. Erroaren hasierako hurbilketa bat behar dugu, x0. Erroaren hurbilketa horretan oinarrituz hurbilketa hobea izango den x1 honelaxe lortzen da:




Iterazioak eginez, n+1 hurbilketa n hurbilketan oinarritzen da formula honen arabera:





Formula horren zergatia geometrikoki adieraz daiteke. Hurrengo irudiko lerro urdina  f(x) funtzioa da, eta lerro zuzen gorria f(x) funtzioaren tangentea (xn, f(xn)) puntuan:





Berde koloreko distantziari hobekuntza deitzen badiogu, orduan alfa angeluaren tangentea f(xn)/hobekuntza litzateke, baina tangente hori f(x) funtzioaren deribatua (xn, f(xn))puntuan da, lerro zuzen gorriaren malda alfa angeluaren tangentea da. Horregatik:




tag(alfa)= f(xn)/hobekuntza   eta aldi berean   tag(alfa)=malda= f'(xn)

beraz    f'(xn)= f(xn)/hobekuntza     (non  hobekuntza=xn-xn+1)





f'(xn)= f(xn)/(xn-xn+1)    nondik    xn-xn+1= f(xn)/f'(xn)





xn+1 = xn f(xn)/f'(xn)







cos(x)+0.5x-2=0 ekuazioaren erro bat kalkula dezagun Newton–Raphson metodoa aplikatuz:


f(x)=cos(x)+0.5x-2


f'(x)=-sin(x)+0.5





Hurrengo irudian cos(x)+0.5x-2 funtzioaren itxura ikus daiteke:








Irudiaren gainean klik egin cos(x)+0.5x-2 funtzioa aztertzeko




Hau da ariketaren NewtonTrigonometrikoak.exe programa exekutagarria. Hurbilketa desberdinen araberako programaren bi irteera hauek erakusten dira jarraian:








Hasierako hurbilketa 3.9 bada, emaitza 4.4734 erroa da









Hasierako hurbilketa 5.7 bada, emaitza 4.4734 erroa da




iruzkinik ez:

Argitaratu iruzkina